Подвеска автомобиля. виды и типы подвесок автомобиля

Как работает?

Принцип работы электромагнитной подвески заключается в зависимости магнитного и электрического поля (то есть используется принцип электромагнетизма). Вся система управляется при помощи бортового компьютера, который ежесекундно считывает показания с колес и на каждое посылает соответствующий сигнал. Демпфирующие свойства обеспечиваются благодаря маленькому двигателю, который размещен на каждом из колес автомобиля.


Специалисты говорят, что устройство электромагнитной подвески значительно проще классической. Ведь здесь нет рабочих жидкостей, лишних сайлентблоков и пружин. Однако установка электромагнитной подвески – дорогое удовольствие. Ведь идея реализована не до конца и практиковалась только на испытательных полигонах.

Автомобили с электромагнитной подвеской

Несмотря на то, что разработку системы ведут еще с незапамятных времен (в следующем году, первому прототипу исполнится более 35 лет), на серийном уровне такой тип подвески не прижился. Все дело в том, что оснащение современных серийных автомобилей подобной технологией не целесообразно по высокой себестоимости подобного оборудования. Кроме того, автопроизводители прекрасно понимают, что обслуживания подобной установки потребует, как минимум специального оборудования, а также знаний по профессиональному ремонту электромагнитных систем. Проблема состоит в том, что подобных салонов, которые имеют такие возможности во всем мире найдется только десяток. Другой стороной медали является факт большой массы используемого оборудования. Для примера, электромагнитная подвеска типа Боуза весит в более полтора раза больше чем аналог в виде подвески McPherson’a. В современном мире, где производители тщательно подходят к экономии массы автомобиля путем добавления соединений на основе карбона и магния, решение по обустройству спортивного автомобиля такой подвеской кажется слишком фантастичным. Другое дело представительские дорогостоящие седаны топ-класса, которые могли бы заиметь первые прототипы в обозримом будущем.

В процессе создания инженеры многих компаний пытались оснастить автомобили подобными системами. Например, для демонстрации возможностей очередной версии электромагнитной подвески инженеры из Bose переоборудовали седан 1999 года Lexus LS.

Краткий обзор видов подвесок

Ассортимент зависимых подвесок включает пять конструктивных исполнений. Среди них различают:

  • на поперечной рессоре,
  • на продольных рессорах,
  • с направляющими рычагами,
  • с дышлом и типа «Де Дион».

Арсенал независимых подвесок намного шире. Сюда относятся такие системы, как: с качающимися полуосями, на продольных рычагах (пружинные и торсионные), на косых рычагах, на продольных и поперечных рычагах, на двойных продольных рычагах, на двойных поперечных рычагах (параллелограммная пружинная и торсионная), рессорные, пневматические и гидропневматические, «качающаяся свеча», «МакФерсон» и торсионно-рычажная с сопряженными рычагами.

Устройство торсионов

Классификация

Существует также еще несколько критериев классификации подвески по тем или иным признакам. Например, по конструкции связи колес с упругими элементами различаются: маятниковая, построенная на продольных рычагах, а так же подвеска с поперечными рычагами может быть одно-, двух- и многорычажной. Существует также телескопическая связь между колесами и упругими элементами.

Разновидности по управляемости

По управляемости подвеска бывает активная (управляемая) и неуправляемая (пассивная), а также полуактивная, с помощью которой допускается регулировать клиренс (дорожный) просвет. По способу соединения элементов подвески с рамой (кузовом) автомобиля различается жесткая и мягкая (упругая и эластичная), а также полужесткая (тракторная).

Применяемость инженерно-технологических решений

Следует отметить, что некоторые виды подвесок легковых машин уже не используются в связи с их несовершенством, а некоторые используются в очень крайних случаях. Трудно также отследить четкую закономерность применения автопроизводителями того или иного вида подвески в конструкции своих автомобилей. Возможно, определяющим фактором являются личные симпатии инженерного состава компании.

Устройство многорычажки Super Strut

Во всяком случае, если при изготовлении грузовых автомобилей преимущественно используется рессорная конструкция, то производители легковых автомобилей предлагают более разнообразные системы подвесок своих машин. В частности, в качестве передней подвески чаще всего используется однорычажная независимая конструкция на основе стойки МакФерсона или реже Super Strat. В конструкции задней подвески применяется независимая многорычажная или торсионная балка.

Для чего в машине подвеска

Всё, что есть в автомобиле, расположено над подвеской или под ней. Разделение грубое, но именно так проще всего понять разницу между подрессоренными и неподрессоренными массами.

О рессорах здесь говорится не в привычном смысле, а как об упругих элементах. Естественно, всё, что подрессорено, испытывает меньшие нагрузки, лучше сохраняется, а в отношении пассажиров можно говорить об уровне комфорта. Вот для этого и нужна подвеска.

Конструктивные элементы и груз не разрушатся от тряски, а люди сохранят свои позвоночники и смогут отдохнуть во время поездки даже по не очень ровной дороге.

При этом чрезмерно комфортную подвеску иметь нежелательно, машина плохо управляется. Всегда выбирается компромисс, в зависимости от назначения автомобиля.

Принцип работы

Желательно чтобы колёса автомобиля постоянно находились в контакте с дорогой, повторяя все её неровности, тогда машина сможет эффективно менять направление, разгоняться или тормозить.

Но если вместе с ними следовать профилю покрытия станет и кузов, то от такой езды мало кто получит удовольствие, поэтому подвеска должна сохранять в идеале его неизменное положение, ликвидируя нежелательные ускорения и перегрузки.

Даже при одиночном воздействии на подвеску она может перейти в колебательное движение.

Кузов начнёт раскачиваться на собственной резонансной частоте. Эту энергию надо обязательно погасить, обычно простым переводом в тепло.

Отсюда вытекает примерный состав функциональных узлов, входящих в состав подвески:

  • упругие элементы, разобщающие жёсткую связь неподрессоренных масс (колёс и ступичных узлов) с кузовом;
  • демпфирующие устройства, чаще называемые амортизаторами;
  • система рычагов и шарниров, задающих нужную траекторию перемещения колёс относительно кузова;
  • дополнительные узлы, синхронизирующие работу отдельных колёсных подвесок, например стабилизаторы продольной и поперечной устойчивости.

Вариантов исполнения много, это обуславливают и исторические факторы, и разнообразие применения автомобилей, и вопросы стоимости.

Устройство

Каждое колесо вращается в ступичном подшипнике, наружная обойма которого жёстко связана с нижней точкой крепления направляющего аппарата подвески.

Обычно это так называемый кулак или балка в случае неразрезного моста. Верхней точкой будет соединение с кузовом. Понятие точки – условное, их может быть несколько.

Между креплениями располагаются параллельно работающие упругий и демпфирующий элементы. За передачу усилия строго вдоль их осей отвечает направляющий аппарат в виде рычагов с расположенными на их концах шарнирами.

Чем подвеска совершеннее и сложнее, тем этих рычагов больше, каждый отвечает за точность траектории перемещения колеса.

В некоторых конструкциях функции элементов объединены, например при рессорной подвеске, когда сама рессора может одновременно работать в качестве рычага, упругого элемента и даже частично амортизатора, используя трение между своими листами.

Адаптивная подвеска

Такая подвеска в корне отличается от остальных типов. Строго говоря, создание адаптивной схемы не было настоящей революцией, так как за основу была принята гидропневматическая подвеска, реализованная на автомобилях Citroen и Mercedes-Benz.

Но в те времена она была довольно примитивной, тяжелой и занимала слишком много места. На сегодняшний день от всех этих недостатков конструкторы смогли избавиться. Единственный минус подобного подхода заключается в его сложности.

Что касается достоинств, то их масса:

  • адаптация под конкретного водителя;
  • минимальные крены кузова и волновая раскачка на высоких скоростях;
  • высокая безопасность;
  • отличная устойчивость на прямой;
  • принудительно изменяемое демпфирование;
  • адаптация под любое дорожное покрытие в автоматическом режиме.

Различные концерны используют свои схемы такой подвески, но общие черты у них одинаковы. Это потому, что любая адаптивная конструкция имеет в своем составе следующие компоненты:

  1. Стабилизаторы поперечной устойчивости с возможностью регулировки;
  2. Активные стойки амортизаторов;
  3. Блок управления ходовой частью;
  4. Электронные датчики (неровной дороги, клиренса и других параметров).

Блок управления анализирует ситуацию на основе данных, полученных от датчиков, и посылает команды на стабилизатор и амортизаторы (зависит от дорожных условий). Все это происходит практически моментально. Кроме этого, варианты работы подвески можно настраивать и самому.

Назначение, основные составляющие

Подвеска в автомобиле выполняет ряд важнейших функций:

  • Обеспечивает упругое крепление колес к кузову (что позволяет им перемещаться относительно несущей части);
  • Гасит колебания, получаемые колесами от дороги (тем самым достигается плавность хода авто);
  • Обеспечивает постоянный контакт колеса с дорожным полотном (сказывается на управляемости и устойчивости);

С момента появления первого авто и по наше время было разработано несколько видов этой составляющей ходовой части. Но при этом создать идеальное решение, которое устраивало бы по всем параметрам и показателям так и не удалось. Поэтому из всех существующих типов подвесок автомобиля выделить какую-то одну невозможно. Ведь в каждой из них имеются свои положительные и отрицательные стороны, которые и предопределяют их использование.

В целом любая подвеска включает в себя три основных составляющих, каждая из которых выполняет свои функции:

  1. Упругие элементы.
  2. Демпфирующие.
  3. Направляющие системы.

В задачу упругих элементов входит восприятие всех ударных нагрузок и плавная передача их на кузов. Дополнительно обеспечивают постоянный контакт колеса с дорогой. К этим элементам относятся пружины, торсионы, рессоры. Ввиду того, что последний тип – рессоры, практически сейчас не используются, далее рассматривать подвеску, в которой они использовались – не будем.

Наибольшее распространение в качестве упругих элементов получили витые пружины. На грузовых же авто нередко используется еще один вид – пневмоподушки.

Витые пружины подвески

Демпфирующие элементы используются в конструкции для гашения колебаний упругих элементов путем их поглощения и рассеивания, что предотвращает раскачивание кузова во время работы подвески. Эту задачу выполняют амортизаторы.

Передний и задний амортизаторы

Направляющие системы связывают колесо с несущей частью, обеспечивают возможность перемещения по требуемой траектории, при этом с удержанием его в заданном положении относительно кузова. К этим элементам относятся всевозможные рычаги, тяги, балки, и все остальные компоненты, принимающие участие создании подвижных соединений (сайлент-блоки, шаровые опоры, втулки и т. д.).

Серийные автомобили

По календарному году:

  • 1954: Citroën Traction Avant 15-6H: самовыравнивающаяся гидропневматическая подвеска Citroën на задних колесах.
  • 1955: Citroën DS , самовыравнивающаяся гидропневматическая подвеска Citroën на всех четырех колесах.
  • 1957: Cadillac Eldorado B BAUME : премьера самовыравнивающейся пневматической подвески GM.
  • 1967: Rolls Royce Silver Shadow Гидропневматическая подвеска с частичной нагрузкой на все четыре колеса. Передняя система удалена в 1969 г.
  • 1970: Citroën SM , самовыравнивающаяся гидропневматическая подвеска Citroën на всех четырех колесах.
  • 1970: Citroën GS , самовыравнивающаяся гидропневматическая подвеска Citroën на всех четырех колесах.
  • 1974: Citroën CX , самовыравнивающаяся гидропневматическая подвеска Citroën на всех четырех колесах.
  • 1975: Mercedes Benz 450 SEL 6.9 Гидропневматическая подвеска на всех четырех колесах.
  • 1982: Citroën BX , самовыравнивающаяся гидропневматическая подвеска Citroën на всех четырех колесах.
  • 1979: Mercedes Benz W126 Гидропневматическая подвеска на всех четырех колесах в качестве опции для моделей LWB v8
  • 1983: Toyota Soarer : премьера полуактивной подвески с электронным управлением Toyota (TEMS).
  • 1985 Mercedes Benz 190E 2.3-16 Подшипник с частичной нагрузкой. Гидропневматическая подвеска всех четырех колес в качестве опции для модели 16v. Базовая комплектация для моделей Evo 1 и Evo 2
  • 1986: Toyota Soarer : первая в мире полностью пневматическая подвеска с электронным управлением (TEMS) (жесткость пружины, регулируемое усилие затухания).
  • 1986: Mercedes Benz W126 Гидропневматическая подвеска на всех четырех колесах с электронным управлением адаптивным демпфированием в качестве опции на моделях LWB v8.
  • 1987: Mitsubishi Galant : VR-4 имеет активную управляемую подвеску (Dynamic ECS). Система обеспечивает комфортную езду и стабильность управления за счет автоматической регулировки высоты автомобиля и демпфирующей силы.
  • 1989: Citroën XM — самовыравнивающийся полуактивный Hydractive на всех четырех колесах с автоматически регулируемыми жесткостью пружин и амортизаторами.
  • 1989: Mercedes Benz R129 Гидропневматическая подвеска с частичной нагрузкой, с автоматической регулировкой жесткости пружин и амортизаторов в качестве опции (ADS)
  • 1990: * Первая полуактивная подвеска, сканирующая дорогу впереди ( сонар ) — Nissan Leopard / Nissan Cedric / Nissan Maxima / Nissan J30 DUET-SS Super Sonic Suspension 1990 года
  • 1990: Infiniti Q45 «Full-Active Suspension (FAS)», активная система подвески, хотя в ней все еще были обычные винтовые пружины.
  • 1992: Toyota Celica ( подвеска Toyota с электронной модуляцией )
  • 1992: Citroën Xantia VSX — самовыравнивающийся, полуактивный Hydractive 2 на всех четырех колесах, с автоматически регулируемыми жесткостью пружин и амортизаторами.
  • 1993: Cadillac , несколько моделей с подвеской с датчиком движения RSS . RSS был доступен как в стандартной, так и в CVRSS ( бесступенчатой ​​подвеске ). Это наблюдение скорости затухания по амортизаторам каждые 15 миллисекунд , выбор между двумя параметрами.
  • 1994: Toyota Celsior представила первую пневмоподвеску Skyhook
  • 1994: Citroën Xantia Activa — самовыравнивающийся, полностью активный Hydractive на всех четырех колесах с гидравлическими стабилизаторами поперечной устойчивости и автоматически регулируемыми жесткостью пружин и амортизаторами.
  • 1998 год: Land Rover Discovery серии 2 — система активного улучшения прохождения поворотов; На некоторых версиях была установлена ​​гидравлическая система стабилизатора поперечной устойчивости с электронным управлением, которая уменьшала крен на поворотах.
  • 1999: Mercedes Benz C215 Самовыравнивающаяся полностью активная гидравлическая система Active Body Control . Доступно на моделях S, CL и SL.
  • 2002: Cadillac Seville STS, первый MagneRide
  • 2004: Volvo и (Four-C, сокращенное название «Continuously Controlled Chassis Concept», полуактивный)
  • 2013: Mercedes Benz W222 : дополнительный элемент управления Magic Body Control . Самовыравнивающаяся полностью активная гидравлическая система с электроникой сканирования дорожного покрытия
  • 2019: модель Toyota Avalon Touring (Adaptive Variable Suspension (AVS))

Виды магнитных подвесок

Разные компании в разработке пошли по своим направлением, руководствуясь внутренними программами и конечными целями.

Принято выделять концепции подвесок от американской компании Delphi Corporation, известной шведской фирмы SKF и идею профессора Bose, чьё имя в названии компании стало синонимом особо качественных акустических систем для автомобилей.

Delphi

Относительная простота этой системы не означает её примитивность или плохую эффективность.

Несмотря на то, что электромагниты здесь управляют только свойствами амортизаторной жидкости, точное воздействие на мгновенную жёсткость демпфера даёт подвеске совершенно новые свойства. Скорость изменения характеристик амортизатора здесь многократно выше, чем у традиционных активных гидравлических демпферов.

Это достигается специальной жидкостью, которая настолько точно и эффективно меняет свою вязкость под воздействием управляющего тока электромагнита, что особой надобности в изменении жёсткости упругого элемента не возникает.

Сильная зависимость работы подвески именно от свойств амортизатора известна давно, их подбору уделяется особое внимание в автоспорте, а там каждая секунда пребывания автомобиля на трассе имеет решающее значение. Характеристики пружин не так важны

Измеряемые микронами габариты частиц позволяют добиться большого быстродействия за счёт минимальной инерции

То же качество обеспечивает и минимальное потребление тока обмотками магнитов, что очень важно для общей экономичности автомобиля и упрощения силовой электроники

Нужная информация снимается с датчиков подвески и других систем автомобиля, обрабатываясь в электронном блоке управления подвеской.

SKF

Шведская компания пошла другим путём

Не касаясь гидравлических амортизаторов, всё внимание было уделено скорости изменения характеристик упругого элемента

Для этого в него была интегрирована специальная капсула, содержащая два мощных электромагнита. Меняя их поле взаимодействия можно настолько быстро реагировать на ситуацию, что данное устройство способно выступать в роли как упругого, так и демпфирующего элементов.

Ведь суть демпфирования состоит в динамическом изменении жёсткости, вплоть до смены знака вектора силы с отталкивания на притяжение. Таким способом компьютер может погасить любые колебания, лишь бы хватило быстродействия и диапазона изменения силы взаимодействия электромагнитов. А это уже вопросы технологического исполнения.

Потребляемая мощность здесь значительно выше, чем у чисто статического режима работы электромагнитов гидравлических активных амортизаторов.

Но до неприемлемых величин она не возрастает, реально сравниваясь с более традиционными потребителями вроде климатической системы или электрического отопителя, а чтобы избежать полного отказа подвески в случае поломок электрооборудования в подвеске сохранены традиционные пружины, частично резервирующие электромагнитное оборудование.

Bose

Много занимавшийся акустикой профессор Bose ближе к концу 20 века увлёкся идеей создания идеальной автомобильной подвески. Неудивительно что исполнительный элемент немного напоминает сильно увеличенную электромагнитную систему большого динамического громкоговорителя.

Но реально общего тут лишь применение устройства, теоретически представляющего собой линейный электродвигатель. То есть если сравнить это с разработкой SKF, то количество полюсов электромагнитов увеличено во много раз. Они расположены на штоке и статоре устройства, напоминающего телескопический амортизатор.

Магнитная отдача узла достаточно велика, это позволило отделаться приемлемой мощностью управления, зато быстродействие таково, что получившийся «динамик» способен гасить любые процессы, от стационарных до колебательных, работая как пружина и как амортизатор.

Достаточно сформировать и подать на обмотки управляющий сигнал, например, аналогичный внешнему воздействию, но с повёрнутой на 180 градусов фазой. То есть полностью погасить нежелательные колебания, наложив на них такие же, но в противоположном направлении в каждый отдельно взятый момент времени.

Такая подвеска настолько эффективна, что её можно считать эталоном среди всех электромагнитных устройств. Подвеска может обеспечить уникально большой рабочий ход, порядка 20 сантиметров, что для гражданских автомобилей чрезвычайно много, отличную стабильность положения кузова, чёткие реакции на любой профиль на любой скорости, отсутствие клевков и кренов.

Первые же презентации системы на тестовых автомобилях Lexus буквально ошеломили автомобильных журналистов, хотя эти машины и в стандартном исполнении обладают высочайшей плавностью хода.

Основные отличия

Стандартная подвеска, которая устанавливается на бюджетные автомобили, ограничена в своих возможностях: она обеспечивает машине хорошую управляемость на трассе либо комфорт на неровной дороге. Адаптивная подвеска имеет два главных отличия от стандартной – это приспосабливание к текущему дорожному покрытию и стилю вождения. Это подвеска нового уровня, представляющая собой систему со множеством датчиков и активных механизмов. При движении на автомобиле с адаптивной подвеской водитель может и не заметить изменение качества дороги.

Данный тип регулируемой подвески нельзя назвать инновацией, так как эта сложная конструкция устанавливается на автомобили не первый год. Однако совсем недавно автопроизводителям удалось сделать ее компактнее, при этом увеличив функционал. Усовершенствование этой части автомобиля также позволило уменьшить крен кузова и улучшить маневренность.

Недостатки системы и сложности серийного производства

В конце 2017 года корпорация Bose продала технологии производства электромагнитной подвески фирме ClearMotion. Новый владелец технических патентов значительно модифицировал конструкцию подвески и снабдил ее привычными упругими пружинами и амортизаторами. Единственным отличием от классической подвесной системы стал электрогидравлический элемент Activalve, который ускоряет отклик амортизатора на неровности дороги.

Подвеска ClearMotion

В настоящий момент технические разработки компании Амара Боуза применяются при серийном производстве кресел для грузовых автомобилей. Сиденья, оснащенные амортизационной системой Bose Ride, пользуются большой популярностью у профессиональных водителей. Некоторые идеи корпорации Боуза применяются американской компанией Cadillac, разработавшей подвесную систему Magnetic Ride Control. Устройства адаптивной подвески снабжаются двойными электромагнитными катушками, которые способны быстро изменять вязкость магнитореологического состава.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Небывалый техник
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Подвеска автомобиля. виды и типы подвесок автомобиля

Как работает?

Принцип работы электромагнитной подвески заключается в зависимости магнитного и электрического поля (то есть используется принцип электромагнетизма). Вся система управляется при помощи бортового компьютера, который ежесекундно считывает показания с колес и на каждое посылает соответствующий сигнал. Демпфирующие свойства обеспечиваются благодаря маленькому двигателю, который размещен на каждом из колес автомобиля.


Специалисты говорят, что устройство электромагнитной подвески значительно проще классической. Ведь здесь нет рабочих жидкостей, лишних сайлентблоков и пружин. Однако установка электромагнитной подвески – дорогое удовольствие. Ведь идея реализована не до конца и практиковалась только на испытательных полигонах.

Автомобили с электромагнитной подвеской

Несмотря на то, что разработку системы ведут еще с незапамятных времен (в следующем году, первому прототипу исполнится более 35 лет), на серийном уровне такой тип подвески не прижился. Все дело в том, что оснащение современных серийных автомобилей подобной технологией не целесообразно по высокой себестоимости подобного оборудования. Кроме того, автопроизводители прекрасно понимают, что обслуживания подобной установки потребует, как минимум специального оборудования, а также знаний по профессиональному ремонту электромагнитных систем. Проблема состоит в том, что подобных салонов, которые имеют такие возможности во всем мире найдется только десяток. Другой стороной медали является факт большой массы используемого оборудования. Для примера, электромагнитная подвеска типа Боуза весит в более полтора раза больше чем аналог в виде подвески McPherson’a. В современном мире, где производители тщательно подходят к экономии массы автомобиля путем добавления соединений на основе карбона и магния, решение по обустройству спортивного автомобиля такой подвеской кажется слишком фантастичным. Другое дело представительские дорогостоящие седаны топ-класса, которые могли бы заиметь первые прототипы в обозримом будущем.

В процессе создания инженеры многих компаний пытались оснастить автомобили подобными системами. Например, для демонстрации возможностей очередной версии электромагнитной подвески инженеры из Bose переоборудовали седан 1999 года Lexus LS.

Краткий обзор видов подвесок

Ассортимент зависимых подвесок включает пять конструктивных исполнений. Среди них различают:

  • на поперечной рессоре,
  • на продольных рессорах,
  • с направляющими рычагами,
  • с дышлом и типа «Де Дион».

Арсенал независимых подвесок намного шире. Сюда относятся такие системы, как: с качающимися полуосями, на продольных рычагах (пружинные и торсионные), на косых рычагах, на продольных и поперечных рычагах, на двойных продольных рычагах, на двойных поперечных рычагах (параллелограммная пружинная и торсионная), рессорные, пневматические и гидропневматические, «качающаяся свеча», «МакФерсон» и торсионно-рычажная с сопряженными рычагами.

Устройство торсионов

Классификация

Существует также еще несколько критериев классификации подвески по тем или иным признакам. Например, по конструкции связи колес с упругими элементами различаются: маятниковая, построенная на продольных рычагах, а так же подвеска с поперечными рычагами может быть одно-, двух- и многорычажной. Существует также телескопическая связь между колесами и упругими элементами.

Разновидности по управляемости

По управляемости подвеска бывает активная (управляемая) и неуправляемая (пассивная), а также полуактивная, с помощью которой допускается регулировать клиренс (дорожный) просвет. По способу соединения элементов подвески с рамой (кузовом) автомобиля различается жесткая и мягкая (упругая и эластичная), а также полужесткая (тракторная).

Применяемость инженерно-технологических решений

Следует отметить, что некоторые виды подвесок легковых машин уже не используются в связи с их несовершенством, а некоторые используются в очень крайних случаях. Трудно также отследить четкую закономерность применения автопроизводителями того или иного вида подвески в конструкции своих автомобилей. Возможно, определяющим фактором являются личные симпатии инженерного состава компании.

Устройство многорычажки Super Strut

Во всяком случае, если при изготовлении грузовых автомобилей преимущественно используется рессорная конструкция, то производители легковых автомобилей предлагают более разнообразные системы подвесок своих машин. В частности, в качестве передней подвески чаще всего используется однорычажная независимая конструкция на основе стойки МакФерсона или реже Super Strat. В конструкции задней подвески применяется независимая многорычажная или торсионная балка.

Для чего в машине подвеска

Всё, что есть в автомобиле, расположено над подвеской или под ней. Разделение грубое, но именно так проще всего понять разницу между подрессоренными и неподрессоренными массами.

О рессорах здесь говорится не в привычном смысле, а как об упругих элементах. Естественно, всё, что подрессорено, испытывает меньшие нагрузки, лучше сохраняется, а в отношении пассажиров можно говорить об уровне комфорта. Вот для этого и нужна подвеска.

Конструктивные элементы и груз не разрушатся от тряски, а люди сохранят свои позвоночники и смогут отдохнуть во время поездки даже по не очень ровной дороге.

При этом чрезмерно комфортную подвеску иметь нежелательно, машина плохо управляется. Всегда выбирается компромисс, в зависимости от назначения автомобиля.

Принцип работы

Желательно чтобы колёса автомобиля постоянно находились в контакте с дорогой, повторяя все её неровности, тогда машина сможет эффективно менять направление, разгоняться или тормозить.

Но если вместе с ними следовать профилю покрытия станет и кузов, то от такой езды мало кто получит удовольствие, поэтому подвеска должна сохранять в идеале его неизменное положение, ликвидируя нежелательные ускорения и перегрузки.

Даже при одиночном воздействии на подвеску она может перейти в колебательное движение.

Кузов начнёт раскачиваться на собственной резонансной частоте. Эту энергию надо обязательно погасить, обычно простым переводом в тепло.

Отсюда вытекает примерный состав функциональных узлов, входящих в состав подвески:

  • упругие элементы, разобщающие жёсткую связь неподрессоренных масс (колёс и ступичных узлов) с кузовом;
  • демпфирующие устройства, чаще называемые амортизаторами;
  • система рычагов и шарниров, задающих нужную траекторию перемещения колёс относительно кузова;
  • дополнительные узлы, синхронизирующие работу отдельных колёсных подвесок, например стабилизаторы продольной и поперечной устойчивости.

Вариантов исполнения много, это обуславливают и исторические факторы, и разнообразие применения автомобилей, и вопросы стоимости.

Устройство

Каждое колесо вращается в ступичном подшипнике, наружная обойма которого жёстко связана с нижней точкой крепления направляющего аппарата подвески.

Обычно это так называемый кулак или балка в случае неразрезного моста. Верхней точкой будет соединение с кузовом. Понятие точки – условное, их может быть несколько.

Между креплениями располагаются параллельно работающие упругий и демпфирующий элементы. За передачу усилия строго вдоль их осей отвечает направляющий аппарат в виде рычагов с расположенными на их концах шарнирами.

Чем подвеска совершеннее и сложнее, тем этих рычагов больше, каждый отвечает за точность траектории перемещения колеса.

В некоторых конструкциях функции элементов объединены, например при рессорной подвеске, когда сама рессора может одновременно работать в качестве рычага, упругого элемента и даже частично амортизатора, используя трение между своими листами.

Адаптивная подвеска

Такая подвеска в корне отличается от остальных типов. Строго говоря, создание адаптивной схемы не было настоящей революцией, так как за основу была принята гидропневматическая подвеска, реализованная на автомобилях Citroen и Mercedes-Benz.

Но в те времена она была довольно примитивной, тяжелой и занимала слишком много места. На сегодняшний день от всех этих недостатков конструкторы смогли избавиться. Единственный минус подобного подхода заключается в его сложности.

Что касается достоинств, то их масса:

  • адаптация под конкретного водителя;
  • минимальные крены кузова и волновая раскачка на высоких скоростях;
  • высокая безопасность;
  • отличная устойчивость на прямой;
  • принудительно изменяемое демпфирование;
  • адаптация под любое дорожное покрытие в автоматическом режиме.

Различные концерны используют свои схемы такой подвески, но общие черты у них одинаковы. Это потому, что любая адаптивная конструкция имеет в своем составе следующие компоненты:

  1. Стабилизаторы поперечной устойчивости с возможностью регулировки;
  2. Активные стойки амортизаторов;
  3. Блок управления ходовой частью;
  4. Электронные датчики (неровной дороги, клиренса и других параметров).

Блок управления анализирует ситуацию на основе данных, полученных от датчиков, и посылает команды на стабилизатор и амортизаторы (зависит от дорожных условий). Все это происходит практически моментально. Кроме этого, варианты работы подвески можно настраивать и самому.

Назначение, основные составляющие

Подвеска в автомобиле выполняет ряд важнейших функций:

  • Обеспечивает упругое крепление колес к кузову (что позволяет им перемещаться относительно несущей части);
  • Гасит колебания, получаемые колесами от дороги (тем самым достигается плавность хода авто);
  • Обеспечивает постоянный контакт колеса с дорожным полотном (сказывается на управляемости и устойчивости);

С момента появления первого авто и по наше время было разработано несколько видов этой составляющей ходовой части. Но при этом создать идеальное решение, которое устраивало бы по всем параметрам и показателям так и не удалось. Поэтому из всех существующих типов подвесок автомобиля выделить какую-то одну невозможно. Ведь в каждой из них имеются свои положительные и отрицательные стороны, которые и предопределяют их использование.

В целом любая подвеска включает в себя три основных составляющих, каждая из которых выполняет свои функции:

  1. Упругие элементы.
  2. Демпфирующие.
  3. Направляющие системы.

В задачу упругих элементов входит восприятие всех ударных нагрузок и плавная передача их на кузов. Дополнительно обеспечивают постоянный контакт колеса с дорогой. К этим элементам относятся пружины, торсионы, рессоры. Ввиду того, что последний тип – рессоры, практически сейчас не используются, далее рассматривать подвеску, в которой они использовались – не будем.

Наибольшее распространение в качестве упругих элементов получили витые пружины. На грузовых же авто нередко используется еще один вид – пневмоподушки.

Витые пружины подвески

Демпфирующие элементы используются в конструкции для гашения колебаний упругих элементов путем их поглощения и рассеивания, что предотвращает раскачивание кузова во время работы подвески. Эту задачу выполняют амортизаторы.

Передний и задний амортизаторы

Направляющие системы связывают колесо с несущей частью, обеспечивают возможность перемещения по требуемой траектории, при этом с удержанием его в заданном положении относительно кузова. К этим элементам относятся всевозможные рычаги, тяги, балки, и все остальные компоненты, принимающие участие создании подвижных соединений (сайлент-блоки, шаровые опоры, втулки и т. д.).

Серийные автомобили

По календарному году:

  • 1954: Citroën Traction Avant 15-6H: самовыравнивающаяся гидропневматическая подвеска Citroën на задних колесах.
  • 1955: Citroën DS , самовыравнивающаяся гидропневматическая подвеска Citroën на всех четырех колесах.
  • 1957: Cadillac Eldorado B BAUME : премьера самовыравнивающейся пневматической подвески GM.
  • 1967: Rolls Royce Silver Shadow Гидропневматическая подвеска с частичной нагрузкой на все четыре колеса. Передняя система удалена в 1969 г.
  • 1970: Citroën SM , самовыравнивающаяся гидропневматическая подвеска Citroën на всех четырех колесах.
  • 1970: Citroën GS , самовыравнивающаяся гидропневматическая подвеска Citroën на всех четырех колесах.
  • 1974: Citroën CX , самовыравнивающаяся гидропневматическая подвеска Citroën на всех четырех колесах.
  • 1975: Mercedes Benz 450 SEL 6.9 Гидропневматическая подвеска на всех четырех колесах.
  • 1982: Citroën BX , самовыравнивающаяся гидропневматическая подвеска Citroën на всех четырех колесах.
  • 1979: Mercedes Benz W126 Гидропневматическая подвеска на всех четырех колесах в качестве опции для моделей LWB v8
  • 1983: Toyota Soarer : премьера полуактивной подвески с электронным управлением Toyota (TEMS).
  • 1985 Mercedes Benz 190E 2.3-16 Подшипник с частичной нагрузкой. Гидропневматическая подвеска всех четырех колес в качестве опции для модели 16v. Базовая комплектация для моделей Evo 1 и Evo 2
  • 1986: Toyota Soarer : первая в мире полностью пневматическая подвеска с электронным управлением (TEMS) (жесткость пружины, регулируемое усилие затухания).
  • 1986: Mercedes Benz W126 Гидропневматическая подвеска на всех четырех колесах с электронным управлением адаптивным демпфированием в качестве опции на моделях LWB v8.
  • 1987: Mitsubishi Galant : VR-4 имеет активную управляемую подвеску (Dynamic ECS). Система обеспечивает комфортную езду и стабильность управления за счет автоматической регулировки высоты автомобиля и демпфирующей силы.
  • 1989: Citroën XM — самовыравнивающийся полуактивный Hydractive на всех четырех колесах с автоматически регулируемыми жесткостью пружин и амортизаторами.
  • 1989: Mercedes Benz R129 Гидропневматическая подвеска с частичной нагрузкой, с автоматической регулировкой жесткости пружин и амортизаторов в качестве опции (ADS)
  • 1990: * Первая полуактивная подвеска, сканирующая дорогу впереди ( сонар ) — Nissan Leopard / Nissan Cedric / Nissan Maxima / Nissan J30 DUET-SS Super Sonic Suspension 1990 года
  • 1990: Infiniti Q45 «Full-Active Suspension (FAS)», активная система подвески, хотя в ней все еще были обычные винтовые пружины.
  • 1992: Toyota Celica ( подвеска Toyota с электронной модуляцией )
  • 1992: Citroën Xantia VSX — самовыравнивающийся, полуактивный Hydractive 2 на всех четырех колесах, с автоматически регулируемыми жесткостью пружин и амортизаторами.
  • 1993: Cadillac , несколько моделей с подвеской с датчиком движения RSS . RSS был доступен как в стандартной, так и в CVRSS ( бесступенчатой ​​подвеске ). Это наблюдение скорости затухания по амортизаторам каждые 15 миллисекунд , выбор между двумя параметрами.
  • 1994: Toyota Celsior представила первую пневмоподвеску Skyhook
  • 1994: Citroën Xantia Activa — самовыравнивающийся, полностью активный Hydractive на всех четырех колесах с гидравлическими стабилизаторами поперечной устойчивости и автоматически регулируемыми жесткостью пружин и амортизаторами.
  • 1998 год: Land Rover Discovery серии 2 — система активного улучшения прохождения поворотов; На некоторых версиях была установлена ​​гидравлическая система стабилизатора поперечной устойчивости с электронным управлением, которая уменьшала крен на поворотах.
  • 1999: Mercedes Benz C215 Самовыравнивающаяся полностью активная гидравлическая система Active Body Control . Доступно на моделях S, CL и SL.
  • 2002: Cadillac Seville STS, первый MagneRide
  • 2004: Volvo и (Four-C, сокращенное название «Continuously Controlled Chassis Concept», полуактивный)
  • 2013: Mercedes Benz W222 : дополнительный элемент управления Magic Body Control . Самовыравнивающаяся полностью активная гидравлическая система с электроникой сканирования дорожного покрытия
  • 2019: модель Toyota Avalon Touring (Adaptive Variable Suspension (AVS))

Виды магнитных подвесок

Разные компании в разработке пошли по своим направлением, руководствуясь внутренними программами и конечными целями.

Принято выделять концепции подвесок от американской компании Delphi Corporation, известной шведской фирмы SKF и идею профессора Bose, чьё имя в названии компании стало синонимом особо качественных акустических систем для автомобилей.

Delphi

Относительная простота этой системы не означает её примитивность или плохую эффективность.

Несмотря на то, что электромагниты здесь управляют только свойствами амортизаторной жидкости, точное воздействие на мгновенную жёсткость демпфера даёт подвеске совершенно новые свойства. Скорость изменения характеристик амортизатора здесь многократно выше, чем у традиционных активных гидравлических демпферов.

Это достигается специальной жидкостью, которая настолько точно и эффективно меняет свою вязкость под воздействием управляющего тока электромагнита, что особой надобности в изменении жёсткости упругого элемента не возникает.

Сильная зависимость работы подвески именно от свойств амортизатора известна давно, их подбору уделяется особое внимание в автоспорте, а там каждая секунда пребывания автомобиля на трассе имеет решающее значение. Характеристики пружин не так важны

Измеряемые микронами габариты частиц позволяют добиться большого быстродействия за счёт минимальной инерции

То же качество обеспечивает и минимальное потребление тока обмотками магнитов, что очень важно для общей экономичности автомобиля и упрощения силовой электроники

Нужная информация снимается с датчиков подвески и других систем автомобиля, обрабатываясь в электронном блоке управления подвеской.

SKF

Шведская компания пошла другим путём

Не касаясь гидравлических амортизаторов, всё внимание было уделено скорости изменения характеристик упругого элемента

Для этого в него была интегрирована специальная капсула, содержащая два мощных электромагнита. Меняя их поле взаимодействия можно настолько быстро реагировать на ситуацию, что данное устройство способно выступать в роли как упругого, так и демпфирующего элементов.

Ведь суть демпфирования состоит в динамическом изменении жёсткости, вплоть до смены знака вектора силы с отталкивания на притяжение. Таким способом компьютер может погасить любые колебания, лишь бы хватило быстродействия и диапазона изменения силы взаимодействия электромагнитов. А это уже вопросы технологического исполнения.

Потребляемая мощность здесь значительно выше, чем у чисто статического режима работы электромагнитов гидравлических активных амортизаторов.

Но до неприемлемых величин она не возрастает, реально сравниваясь с более традиционными потребителями вроде климатической системы или электрического отопителя, а чтобы избежать полного отказа подвески в случае поломок электрооборудования в подвеске сохранены традиционные пружины, частично резервирующие электромагнитное оборудование.

Bose

Много занимавшийся акустикой профессор Bose ближе к концу 20 века увлёкся идеей создания идеальной автомобильной подвески. Неудивительно что исполнительный элемент немного напоминает сильно увеличенную электромагнитную систему большого динамического громкоговорителя.

Но реально общего тут лишь применение устройства, теоретически представляющего собой линейный электродвигатель. То есть если сравнить это с разработкой SKF, то количество полюсов электромагнитов увеличено во много раз. Они расположены на штоке и статоре устройства, напоминающего телескопический амортизатор.

Магнитная отдача узла достаточно велика, это позволило отделаться приемлемой мощностью управления, зато быстродействие таково, что получившийся «динамик» способен гасить любые процессы, от стационарных до колебательных, работая как пружина и как амортизатор.

Достаточно сформировать и подать на обмотки управляющий сигнал, например, аналогичный внешнему воздействию, но с повёрнутой на 180 градусов фазой. То есть полностью погасить нежелательные колебания, наложив на них такие же, но в противоположном направлении в каждый отдельно взятый момент времени.

Такая подвеска настолько эффективна, что её можно считать эталоном среди всех электромагнитных устройств. Подвеска может обеспечить уникально большой рабочий ход, порядка 20 сантиметров, что для гражданских автомобилей чрезвычайно много, отличную стабильность положения кузова, чёткие реакции на любой профиль на любой скорости, отсутствие клевков и кренов.

Первые же презентации системы на тестовых автомобилях Lexus буквально ошеломили автомобильных журналистов, хотя эти машины и в стандартном исполнении обладают высочайшей плавностью хода.

Основные отличия

Стандартная подвеска, которая устанавливается на бюджетные автомобили, ограничена в своих возможностях: она обеспечивает машине хорошую управляемость на трассе либо комфорт на неровной дороге. Адаптивная подвеска имеет два главных отличия от стандартной – это приспосабливание к текущему дорожному покрытию и стилю вождения. Это подвеска нового уровня, представляющая собой систему со множеством датчиков и активных механизмов. При движении на автомобиле с адаптивной подвеской водитель может и не заметить изменение качества дороги.

Данный тип регулируемой подвески нельзя назвать инновацией, так как эта сложная конструкция устанавливается на автомобили не первый год. Однако совсем недавно автопроизводителям удалось сделать ее компактнее, при этом увеличив функционал. Усовершенствование этой части автомобиля также позволило уменьшить крен кузова и улучшить маневренность.

Недостатки системы и сложности серийного производства

В конце 2017 года корпорация Bose продала технологии производства электромагнитной подвески фирме ClearMotion. Новый владелец технических патентов значительно модифицировал конструкцию подвески и снабдил ее привычными упругими пружинами и амортизаторами. Единственным отличием от классической подвесной системы стал электрогидравлический элемент Activalve, который ускоряет отклик амортизатора на неровности дороги.

Подвеска ClearMotion

В настоящий момент технические разработки компании Амара Боуза применяются при серийном производстве кресел для грузовых автомобилей. Сиденья, оснащенные амортизационной системой Bose Ride, пользуются большой популярностью у профессиональных водителей. Некоторые идеи корпорации Боуза применяются американской компанией Cadillac, разработавшей подвесную систему Magnetic Ride Control. Устройства адаптивной подвески снабжаются двойными электромагнитными катушками, которые способны быстро изменять вязкость магнитореологического состава.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Небывалый техник
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: